

IN ITEM RESPONSE THEORY

Martha L. Stocking

and

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-80-C-0402

Contract Authority Identification Number NR No. 150-453

Frederic M. Lord, Principal Investigator

Educational Testing Service

Princeton, New Jersey

June 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government.

TE FILE COP

JUL 1 3 1982

Approved for public release; distribution unlimited.

82 07 13 017

DEVELOPING A COMMON METRIC

IN ITEM RESPONSE THEORY

Martha L. Stocking

and

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-80-C-0402

Contract Authority Identification Number NR No. 150-453

Frederic M. Lord, Principal Investigator

Educational Testing Service Princeton, New Jersey

June 1982

ATT S. ASSISTEATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVT ACCESSION NO.	1. RECIPIENT'S CATALOG NUMBER
₹ = "_C /end Suptide;	S. TYPE OF REPORT & PERIOD COVERED
Towologing a Common Metric in Item Response theory	Technical Report
	6. PERFORMING ORG. REPORT NUMBER RR-82-25-ONR
~ AUTHOR(e)	B. CONTRACT OR GRANT HUMBERY
Maryna L. Stocking and Frederic M. Lord	N0C014-80-C-0402
2. Fixed which daganization hame and appress Findon Long 1 Testing Service enthoston, NJ 08541	19. PROGRAM ELEMENT, PROJECT, "ANK AREA & WORK JN17 NUMBERS NR 150-453
Figure of Mayol Research (Code 458) Avilington, VA 22217	June 1982 13. NUMBER OF F. GES
14 HONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION, DOWNGRAD, NO SCHEDULE

5. DISTRIGUT CH STATEMENT for this Reports

approved for public release; distribution unlimited.

SETRIBUTION STATEMENT (of the energet entered in Block 20, if different from Report)

ESTON VEAT NOMED PAGE

19 - KEY WORDS Continue on reverse side it neglectry and identify by plack number)

Team Response Theory, Common Metric, Scale Transformations, Item Banking, Equating, Etem Bias

12 ABSTYACT (Continue on reverse side if necessary and identity by block manber)

A common problem arises when independent estimates of item parameters from two separate data sets must be expressed in the same metric. This problem is trequently confronted in studies of horizontal and vertical equating and in studies of item bias. This paper discusses a number of methods for transming one metric to another metric and presents a new method. Data are given comparing this new method with a current method and recommendations are made.

00 1000, 1473

EDITION OF 1 NOV 68 (5 DESCUETE 5. N 0102- UF-014-000)

UNCLASSIFIED

Developing a Common Metric in Item Response Theory

Abstract

A common problem arises when independent estimates of item parameters from two separate data sets must be expressed in the same metric. This problem is frequently confronted in studies of horizontal and vertical equating and in studies of item bias. This paper discusses a number of methods for transforming one metric to another metric and presents a new method. Data are given comparing this new method with a current method and recommendations are made.

Accession For	
MTIS GRA&I	R
DTIC TAB	$\overline{\Box}$
Unannounced	ā
Justification_	
Distribution/ Availability	
to and/or	
Dist	l
/	
/ > .	
للماء والمراجين والتبلغ بمعالها	

Developing a Common Metric in Item Response Theory*

Introduction

Suppose that item parameters for a given set of items have been independently estimated using data obtained from two different groups of examinees. These item parameter estimates will be different because the metric or scale defined by each independent calibration of the items is different. Many applications of item response theory (IRT) require that these item parameter estimates be expressed in the same metric. Such applications include vertical score-scale equating, horizontal score-scale equating, and item bias studies.

It is possible to transform item parameter estimates in one metric to another metric by a number of different methods. This paper will discuss the nature of these scale transformations, survey a number of current transformation methods, and present a new method and some results of its application.

The Nature of Scale Transformations

Item response theory models $P_i(\theta_a; \alpha_i, \beta_i, \gamma_i)$, the probability of a correct response to item i by a person with ability level θ_a . In typical models, $P_i(\theta_a; \alpha_i, \beta_i, \gamma_i)$ is a function of $\alpha_i(\theta_a - \beta_i)$, where γ_i is the item discrimination, β_i is the item difficulty,

^{*}This work was supported in part by contract N00014-80-C-0402, project designation NR150-453 between the Office of Naval Research and Educational Testing Service. Reproduction in whole or in part is permitted for any purpose of the United States Government.

and γ_i is the probability that an individual of very low ability answers the item correctly. When $P_i(\theta_a;\alpha_i,\beta_i,\gamma_i)$ is a function of $\alpha_i(\theta_a-\beta_i)$, the origin and unit of measurement of the ability (and difficulty) metric are undetermined. That is to say, suppose θ_a is transformed by a linear transformation, producing θ_a^* . Suppose the same linear transformation is applied to β_i to produce β_i^* . Finally, α_i is divided by the multiplicative constant of the linear transformation to produce α_i^* . These transformations will not change the probability of a correct response: $P_i(\theta_a^*;\alpha_i^*,\beta_i^*,\gamma_i) = P_i(\theta_a;\alpha_i^*,\beta_i^*,\gamma_i)$. Notice that no transformation is necessary for the γ_i because γ_i is on the probability metric.

If an item is calibrated, i.e., its parameters are estimated, as part of one test, and then calibrated as part of a second test given to a different group, the actual values of the estimates of the parameters will differ because the scales established by the two calibrations differ. However, the relationship between these two scales will be linear since they differ only in origin and unit of measurement.

If b_{i1} is the estimate of item difficulty from the calibration of item i in test 1, and b_{i2} is the estimate of the same item difficulty from the calibration of test 2, b_{i2}^* , the value of b_{i2} transformed to the scale of test 1, is

$$b_{12}^{*} = Ab_{12} + B$$
 , (1)

where A and B are constants of the linear transformation of scale.

If estimated item difficulties are transformed by a linear transformation, estimated abilities must be transformed by the same transformation, thus

$$\theta_{a2}^* = A\hat{\theta}_{a2} + B \qquad . \tag{2}$$

If estimated item difficulty and ability are transformed by these linear expressions, then estimated item discrimination is transformed by

$$a_{i2}^* = a_{i2}/A \qquad . \tag{3}$$

These transformations do not change $a_{i2}(\hat{\theta}_{a2} - b_{i2})$, consequently $P_i(\hat{\theta}_{a2}; a_{i2}, b_{i2}, c_{i2}) = P_i(\hat{\theta}_{a2}, a_{i2}^*, b_{i2}^*, c_{i2})$.

The problem of transforming the scales reduces to the problem of finding the appropriate A and B of the linear transformation. If we were dealing with true values of the parameters on their respective scales, it would be simple to find the correct values of A and B; we could plot the values of two or more item difficulties and determine the line passing through them. But, we do not have true values; we have only estimates of them, and these estimates contain error. The estimated item difficulties will not fall into a straight line, but be scattered around some straight line. All methods of transforming scales attempt to estimate the parameters of this line by various techniques, and are applicable to any IRT model where $P_{\bf i}(\theta_{\bf a};\alpha_{\bf i},\gamma_{\bf i},\gamma_{\bf i})$ is a function of $\gamma_{\bf i}(\theta_{\bf a}-\gamma_{\bf i})$.

Current Methods

Superficially, the problem of finding the linear relationship between two sets of numbers might seem to call for simple regression techniques. The estimated item difficulties (or abilities) from one calibration might be used as the independent variable, and those obtained from the second calibration as the dependent variable. This approach would be incorrect. A regression approach assumes the independent variable is measured without error; we know this is not the case. But more important, a regression procedure is not symmetric with respect to its treatment of the two estimates of item difficulties. Since we have no reason for emphasizing or favoring one estimate of item difficulty over another estimate of the same item difficulty, we require a symmetric procedure.

A class of symmetric methods uses the first two moments of the distributions of estimated item difficulties. These methods find the parameters of the linear transformation, A and B, such that the mean and standard deviation of the transformed distribution of estimated item difficulties from the second calibration are equal to the mean and standard deviation of the estimated item difficulties from the first calibration.

A simple application of this method is found in Marco (1977) and in Cook, Eignor, and Hutten (1979). Poorly estimated item difficulties may have a serious impact of the computation of sample moments, however, producing a linear transformation that cannot be useful. Cook et al. (1979)

attempt to solve this by restricting the range of the difficulties used in computing moments.

Bejar and Wingersky (1981) use a more elaborate approach. Robust methods that give smaller weights to outlying points are used to estimate the moments. Linn, Levine, Hastings, & Wardrop (1980) attempt to reduce the influence of outliers by using weighted moments where the weights are inversely proportional to the estimated standard error of the estimates of the item difficulties.

The Bejar and Wingersky procedure treats all outliers in the same fashion, regardless of their standard error. The Linn et al. procedure creats all points with the same standard error in the same fashion, regardless of their outlier status. A procedure was developed by Lord and Stocking which attempts to overcome these potential problems. This procedure begins with a weighted estimate of the transformation exactly as in Linn et al. A robust procedure is then used to give small weights to those values whose perpendicular distance from this initial line is large, and a new line is estimated. The robust weighting is repeated until changes in the perpendicular distances become small. Details of this method are presented in the Appendix. Some results of this method will be described in subsequent sections of this paper.

A drawback of all of these "mean and sigma" transformation procedures is that they are typically applied only to the estimated item difficulties. That is, the A and B of the linear transformation of scale are estimated using only the \mathbf{b}_i , and then applied to transform the $\hat{\mathbf{a}}_i$ and the \mathbf{a}_i . While this is theoretically correct, better methods may exist which use more of the information available from the calibrations.

A class of methods, called "characteristic curve methods" in this paper, uses more information from calibrations. Each calibration of an item yields an estimated item response function or item characteristic curve $P_{i}(a_{a}) \equiv P_{i}(a_{a};a_{i},b_{i},c_{i})$. If estimates were error free, the proper choice of A and B for the linear transformation would cause these two curves to coincide. Haebara (1980) averages the squared difference between the individual item response functions over a suitable distribution of a_{i} , sums over the items common to the two calibrations, and chooses A and B to minimize this sum. Divgi (1980) chooses the A and B of the linear transformation to minimize the maximum difference between the sum of item response functions for the first calibration and the sum of the item response functions for the second calibration.

The New Method

This method falls into the class of characteristic curve methods. An examinee, a , with ability $\theta_{\bf a}$ has a true score $\frac{1}{3}$ defined by

$$\xi_{\mathbf{a}} \equiv \xi(\theta_{\mathbf{a}}) \equiv \sum_{\mathbf{i}=1}^{n} P_{\mathbf{i}}(\theta_{\mathbf{a}}; \alpha_{\mathbf{i}}, \gamma_{\mathbf{i}}, \gamma_{\mathbf{i}}) , \qquad (4)$$

where n is the number of items in the test. The correct linear transformation of scales from two different calibrations of the same test would produce the same true scores for examinee a if the α_i , β_i , γ_i were known. If $\hat{\beta}_a^{\star}$ is the estimated true score obtained from the second calibration of the test after it has been transformed to the scale of the first, then

$$\begin{cases} x = x \times (a) = 0 \\ a = 1 \end{cases} P_{i}(\hat{a}; a_{i}^{*}, b_{i}^{*}, c_{i}) \qquad (5)$$

For an examinee, the difference $(\frac{1}{a} - \frac{5}{a})$ should be small. In practice, we want to choose A and B such that for a suitable group of examinees, the average squared difference between true score estimates is as small as possible. The function to be minimized is

$$F = \frac{1}{N} \sum_{a=1}^{N} (\hat{\xi}_a - \hat{\xi}_a^*)^2 , \qquad (6)$$

where N is the number of examinees in the arbitrary group.

This function F considered as a function of A and B will be minimized when

$$\frac{\partial F}{\partial A} = \frac{-2}{N} \sum_{a=1}^{N} (\hat{\xi}_a - \hat{\xi}_a^*) \frac{\partial \hat{\xi}_a^*}{\partial A} = 0 \qquad , \tag{7}$$

and

$$\frac{\partial \mathbf{F}}{\partial \mathbf{B}} = \frac{-2}{N} \sum_{\mathbf{a}=1}^{N} (\hat{\boldsymbol{\xi}}_{\mathbf{a}} - \hat{\boldsymbol{\xi}}_{\mathbf{a}}^{*}) \frac{\partial \hat{\boldsymbol{\xi}}_{\mathbf{a}}^{*}}{\partial \mathbf{B}} = 0 \qquad . \tag{8}$$

Now, using the chain rule of differentiation,

$$\frac{\frac{\partial^{2} a}{\partial A}}{\partial A} = \frac{n}{i=1} \left(\frac{\partial P_{i}(a_{i}; a_{1}^{*}; a_{1}^{*}; b_{1}^{*}; c_{12})}{\partial b_{12}^{*}} \frac{\partial b_{12}^{*}}{\partial A} + \frac{\partial P_{i}(a_{i}; a_{1}^{*}; a_{1}^{*}; b_{12}^{*}; c_{12})}{\partial a_{12}^{*}} \frac{\partial a_{12}^{*}}{\partial A} \right) . \tag{9}$$

Differentiating equations (1) and (3) gives $\frac{3b_{12}^*}{3A} = A$ and $\frac{3a_{12}^*}{3A} = \frac{-a_{12}}{A^2}$. Substituting these derivatives into (9) gives the partial derivative

$$\frac{\frac{\partial^2 \star}{\partial A}}{\partial A} \equiv \frac{n}{1} \left(b_{12} \frac{\partial P_1(a_1, a_{12}^*, b_{12}^*, c_{12}^*)}{\partial b_{12}^*} - \frac{a_{12}}{A^2} \frac{\partial P(a_1, a_{12}^*, b_{12}^*, c_{12}^*)}{\partial a_{12}^*} \right) . (10)$$

Also,

$$\frac{3\hat{c}_{a}^{*}}{\beta B} = \frac{n}{i=1} \frac{\beta P_{i}(\beta_{a}; a_{12}^{*}, b_{12}^{*}, c_{12})}{\beta b_{12}^{*}} \frac{\beta b_{12}^{*}}{\beta B} . \tag{11}$$

From equation (1), $\frac{b_{12}^{*}}{B} = 1$, and substitution into (11) gives

$$\frac{a}{a} = \frac{n}{i=1} \frac{P_{i}(a; a_{i2}^{*}, b_{i2}^{*}, c_{i2})}{a_{i2}^{*}b_{i2}^{*}} .$$
 (12)

The functional form of the partial derivatives of the item response function depends on the mathematical model chosen. Formulas for the partial derivatives for the three-parameter logistic item response function are given in Lord (1980, Chapter 4).

Once the functional form for the item response function is chosen, its derivatives are substituted into equations (10) and (12). These new expressions are then substituted into equations (7) and (8) to find the location of the minimum of F in equation (6).

In the applications described in the following section, the arbitrary group of examinees over which the function was minimized was chosen to be a spaced sample of about 200 examinees from the first calibration of a test. The parameters A and B of the linear transformation were found by minimizing F using the multivariate search technique by Davidon (1959) and Fletcher and Powell (1963).

Results

The Data and Analyses

Data from about 2000 examinees from each of 12 separate administrations of the Scholastic Aptitude Test (SAT) were selected for this study.

The SAT consists of six, 30-minute sections: two operational verbal sections, two operational mathematical sections, one Test of Standard Written English (TSWE) and one variable section containing equating or pretest items. The two verbal sections contain 40 and 45 items respectively; mathematical sections are 25 and 35 items respectively. Verbal equating or pretest sections are 40 items long; corresponding mathematical sections are 25 items long. TSWE data were not used in this study.

Each box in Exhibit 1 represents the operational sections, either verbal or mathematical, of a particular form of the SAT (upper case letters and numbers) and the equating section administered with that test form

(lower case letters). Each box contains items that are the same as items shown in boxes above and below it. For example, the second box in the verbal series contains items designated "X2fe." The "fe" items overlap with those contained in the box labeled "V4fe"; the "X2" items overlap with those contained in the box labeled "X2fm." The last box in each of the verbal and mathematical series contains items that overlap with the items in the first box, thus forming a closed chain.

Each box represents a separate calibration run using the computer program LOGIST (Wingersky, in press; Wingersky, Barton, Lord, 1982). For both the verbal chain and the mathematical chain, the scale established by the calibration of the items in the first box in the chain was arbitrarily chosen as the "base scale" for that chain. The estimates of item parameters for the overlapping items were then used to transform the scales established by the separate calibrations onto the appropriate base scale. For the verbal chain, for example, X2fe was transformed to the scale of V4fe using the item parameter estimates for the fe items that appear in both calibrations. Then X2fm was transformed to the scale of the transformed X2fe items, using the item parameter estimates for the X2 common items. This, of course, places the X2fm items on the V4fe scale. The next set of items, Y3fm, was transformed to the scale of the transformed X2fm items and so forth, until all items were placed on the scale of V4fe.

This sequential transformation process was performed in two ways:

(1) the robust mean and sigma Lord and Stocking method described in

Exhibit 1: Verbal and Mathematical Chains. Each box contains verbal or mathematical sections (capital letters and numbers) and an equating section (small letters).

the Appendix and (2) the new characteristic curve method described previously. This allows the comparison of the end results of the chaining process between the two transformation methods, but does not allow the comparison of the results of individual "links" in the chain.

To compare individual links in the chain, each link in the chain from the robust mean and sigma method was repeated exactly with the characteristic curve method. For example, in the verbal chain, X2fm was transformed to the scale of the (mean and sigma) transformed X2fe by the mean and sigma method as part of the sequential chaining using this method. This link was repeated exactly by using the characteristic curve method to transform X2fm to the scale of the (mean and sigma) transformed X2fe. In contrast to the chain of characteristic curve transformations, this series of characteristic curve transformations does not form a chain.

Results of Transformations for Verbal Items--Individual Links

A typical comparison of individual links is shown in Figures 1 and 2. In Figure 1, the horizontal axis is the (robust mean and sigma) transformed item difficulties for operational section X2 from the X2fe calibration. The vertical axis is the scale of the item difficulties for operational section X2 from the X2fm calibration. In Figure 2, the horizontal axis is the scale of the (robust mean and sigma) transformed item discriminations from X2 of X2fe. The vertical axis is the scale of the item discriminations of X2 from X2fm. The solid line through the

Figure 2. The two transformations for item discriminations compared for a typical verbal link.

the points in each figure is the linear transformation estimated by the robust mean and sigma method. The dashed line is the linear transformation estimated by the new characteristic curve method. The linear transformations do not differ much.

The largest difference found between the two methods for the verbal chain is shown in Figures 3 and 4. Figure 3 shows the presence of six points which could be considered outliers. The robust mean and sigma method explicitly tries to deal with these points, first by giving them low weights if the estimated standard errors are large, and then by giving them low weights if the perpendicular distance to the initial line is large. These points all ended up with weights which were very small or zero, thus some available information may have been discarded. The characteristic curve method does not discard any information. No other verbal link contained as many outliers as this one. It is possible that the difference between the two methods is due to their differential discarding of information.

On the whole, the direct comparison of individual links shows little difference between the two transformation methods for verbal data.

Results of Transformations for Mathematical Items--Individual Links

Most of the comparisons of the two transformation methods using mathematical data show little difference between the two methods.

There are exceptions, one of which is shown in Figures 5 and 6.

Inspection of Figure 5 shows the characteristic curve transformation is clearly a better fit to the data than the robust mean and sigma

Figure 3. The two transformations for item difficulties compared for the worst verbal link.

Figure 4. The two transformations for item discriminations compared for the worst verbal link.

transformation. This difference is more visible in Figure 6 where the robust mean and sigma transformation of the item discriminations produces unsatisfactory results. The line does not bisect the point cloud; there are only 18 out of 60 points below the line. The characteristic curve transformation was better; 31 out of 60 points are below the line.

There were two links which produced comparisons of this kind. That is, the characteristic curve transformation worked better than the mean and sigma transformation in both the fit to the item difficulties and the fit to the item discriminations. There were no links in which the mean and sigma transformation fit both the item difficulties and item discriminations better.

Chain Results

The cumulative results of chains of transformations may be evaluated by transforming the last (transformed) set of items in the chain directly to the base scale defined by the first set of items. Since the first and last sets of items are identical, this transformation should be an identity transformation. Figure 7 shows this comparison of each transformation method for the SAT verbal chain, and the identity transformation. The difficulties for items common to the first and last set of items are plotted on the horizontal axis. Figure 8 displays the same information for the SAT mathematical chain.

Figure 5. The two transformations for item difficulties compared for a bad mathematical link.

Figure 6. The two transformations for item discriminations compared for a bad mathematical link.

Figure 7. The final transformations for the SAT verbal chain.

Figure 8. The final transformations for the SAT mathematical chain. $\label{eq:saturation} % \begin{array}{c} \text{Figure 8.} \\ \text{Figure 8.$

The robust mean and sigma method gives slightly better results than the characteristic curve method for verbal data. For mathematical data, the characteristic curve method worked better than the robust mean and sigma method.

Conclusions

In situations where the robust mean and sigma transformation method worked well, as in the verbal data and most of the mathematical data, the characteristic curve method also worked well. However, the robust mean and sigma method sometimes produced unsatisfactory results. In these instances, the characteristic curve method worked much better. In particular, the characteristic curve method produced a much better transformation for the item discriminations (see Figure 6). If one is choosing a transformation method, the characteristic curve method, which uses more of the information available from each of the calibrations, would be recommended by the authors.

Appendix

Transforming Logistic Scales Using a Robust Iterative Weighted

Mean and Sigma Method

This transformation method uses a function of the estimated standard errors of the estimated item difficulties for common items as weights to determine an initial transformation line based on mean and sigma equating of weighted estimates of item difficulties for the common items. A new set of weights is computed using a combination of the estimated standard error weights and robust (Tukey) weights based on perpendicular distances to the line. A new transformation line is computed and the procedure iterates until the maximum change in the perpendicular distances is less than some criterion.

Method

Computing the Standard Errors

The inverse of the information matrix I (p. 191 of Lord (1980)) is an approximation to the variance/covariance matrix for the item parameter estimates. The diagonal element of the inverse corresponding to the item difficulty is the estimated variance of the estimate of item difficulty. The sequare root of this quantity is the estimated standard error of the estimate of item difficulty.

Each item has two estimated item difficulties, one from each calibration. Therefore, each item has two estimated standard errors. The initial weight for an item to be used in the iterative procedure is the reciprocal of the larger estimated squared standard error of the estimated item difficulty.

The accuracy with which an estimated standard error of b is computed is the ratio of the determinant to the product of the diagonals of the information matrix. If this ratio is less than 0.0001, the estimated standard error is not accurate. The item is given a standard error weight of zero.

All people are included in the computation except those who did not reach the item.

Computing the Mean and Sigma Transformation

We have two distributions of weighted estimated item difficulties, one from each calibration. We let b_1 be the distribution from the first calibration, and b_2 be the distribution from the second calibration and compute

 $ar{x}_{b_1}$, the mean of b_1 , σ_{b_1} , the standard deviation of b_1 , $ar{x}_{b_2}$, the mean of b_2 , σ_{b_1} , the standard deviation of b_2 .

The mean and sigma transformation (line) to put the second calibration estimated item difficulties onto the scale of the first is

$$b_2' = A * b_2 + B$$
,

where $\mathfrak{b}_2^{\,\prime}$ is the transformed distribution from the second calibration. For this transformation,

$$A = \sigma_{b_1}/\sigma_{b_2},$$

$$B = \overline{X}_{b_1} - A * \overline{X}_{b_2}.$$

Computing the Tukey Weights

Page 20 of Mosteller and Tukey (1977) gives a method of computing a robust estimate of location by weighting data with differential weights. We use only one piece of this process, namely the formula for the weights.

For our purposes, Y^* is the transformation line we have tentatively found. We replace Tukey's $(Y(i) - Y^*)$ with the perpendicular distance of a point to the line.

Let D(i) equal the absolute value of the perpendicular distance. Then our weights, T(i) , are

$$T(i) = \begin{cases} \{1 - (D(i)/CS)^2\}^2 & \text{when } (D(i)/CS)^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$

where S is the median of the D(i) and C is a constant equal to 6.

The Iterative Procedure

The iterative procedure is as follows:

Step 1: For each item difficulty, for each common item, compute

$$W(i) = SE(B(i))^{-2},$$

where SE(B) is the larger of the two estimated standard errors. Step 2: Compute a vector of scaled weights

$$W(i)' = W(i)/(sum of W(i))$$

- Step 3: Compute the mean and sigma transformation line between the two sets of estimated item difficulties weighted by W', and get the slope, A, and the intercept, B.
- Step 4: Compute the perpendicular distances of each point to the line.
- Step 5: Compute the Tukey weights, T(i) for each item, using these perpendicular distances.
- Step 6: Reweight each point by a combined weight U(i), where

$$U(i) = (W(i) * T(i))/(sum of W(i) * T(i))$$

- Step 7: Compute the weighted mean and sigma transformation line using these new weights.
- Step 8: Repeat Steps 4, 5, and 6 until the maximum change in the perpendicular distances is less than 0.01.

Result

This procedure gives low weights to poorly determined item difficulties or to item difficulties which are outliers. Once the final transformation is found for the estimated item difficulties, the estimated item discriminations are transformed, as well as the ability estimates.

References

- Bejar, I., & Wingersky, M. S. An application of item response theory to equating the Test of Standard Written English (College Board Report No. 81-8 and Educational Testing Service Research Report 81-35). Princeton, N.J.: College Board Publication Orders, 1981.
- Cook, L. L., Eignor, D. R., & Hutton, L. R. Considerations in the application of latent trait theory to objectives-based criterion-referenced tests. Paper presented at the meeting of the American Educational Research Association, San Francisco, 1979.
- Davidon, W. C. <u>Variable metric method for minimization</u> (Research and Development Report ANL-5990, rev. ed.). Argonne, Ill.: Argonne National Laboratory, U.S. Atomic Energy Commission, 1959.
- Divgi, D. R. Evaluation of scales for multilevel test batteries.

 Revision of paper presented at the meeting of the American Educational Research Association, Boston, 1980.
- Fletcher, R., & Powell, M. J. D. A rapidly convergent descent method for minimization. The Computer Journal, 1963, 6, 163-168.
- Haebara, T. Equating logistic ability scales by a weighted least squares method. <u>Japanese Psychological Research</u>, 1980, 22, 144-149.

- Linn, R. L., Levine, M. V., Hastings, C. N., & Wardrop, J. L. An
 investigation of item bias in a test of reading comprehension
 (Technical Report No. 163). Urbana, Ill.: Center for the Study
 of Reading, University of Illinois, 1980.
- Lord, F. M. Applications of item response theory to practical testing problems. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1980.
- Marco, G. L. Item characteristic curve solutions to three intractable testing problems. <u>Journal of Educational Measurement</u>, 1977, <u>14</u>, 139-160.
- Mosteller, F. & Tukey, J. W. <u>Data analysis and regression: A second</u>
 course in statistics. Reading, Mass.: Addison-Wesley, 1977.
- Petersen, N. S., Cook, L. L., & Stocking, M. L. <u>IRT versus conventional</u>

 <u>equating methods: A comparative study of scale stability</u>. Paper

 presented at the meeting of the American Educational Research

 Association, Los Angeles, 1981.
- Wingersky, M. S. LOGIST: A program for computing maximum likelihood procedures for logistic test models. In R. K. Hambleton (Ed.),

 ERIBC monograph on applications of item response theory. Vancouver,

 B.C.: Educational Research Institute of British Columbia, in press.
- Wingersky, M. S., Barton, M. A., & Lord, F. M. <u>LOGIST user's guide</u>.

 Princeton, N.J.: Educational Testing Service, 1982.

DISTRIBUTION LIST

Navy

- 1 Dr. Jack R. Borsting Provost and Academic Dean U.S. Naval Postgraduate School Monterey, CA 93940
- Chief of Naval Education and Training Liason Office Air Force Human Resource Laboratory Flying Training Division Williams Air Force Base, AZ 85224
- 1 CDR Mike Curran
 Office of Naval Research
 800 North Quincy Street
 Code 270
 Arlington, VA 22217
- 1 Dr. Pat Federico
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Mr. Paul Foley
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Dr. John Ford
 Navy Personnel R & D Center
 San Diego, CA 92152
- Patrick R. Harrison
 Psychology Course Director
 Leadership and Law Department (7b)
 Division of Professional Development
 U.S. Naval Academy
 Annapolis, MD 21402

- Dr. Norman J. Kerr Chief of Naval Technical Training Naval Air Station Memphis (75) Millington, TN 38054
- Dr. William L. Maloy Principal Civilian Advisor for Education and Training Naval Training Command, Code 00A Pensacola, FL 32508
- 1 CAPT Richard L. Martin, USN
 Prospective Commanding Officer
 USS Carl Vinson (CNV-70)
 Newport News Shipbuilding and
 Drydock Co.
 Newport News, VA 23607
- I Dr. James McBride
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Mr. William Nordbrock
 Instructional Program Development
 Building 90
 NET-PDCD
 Great Lakes NTC, IL 60088
- 1 Library, Code P201L
 Navy Personnel R & D Center
 San Diego, CA 92152

- b Commanding Officer Naval Research Laboratory Code 2627 Washington, DC 20390
- 1 Psychologist ONR Branch Office Building 114, Section D bb6 Summer Street Boston, MA 02210
- 1 Office of Naval Research Code 437 800 North Quincy Street Arlington, VA 22217
- 5 Personnel and Training Research Programs Code 458 Office of Naval Research Arlington, VA 22217
- 1 Psychologist ONR Branch Office 1030 East Green Street Pasadena, CA 91101
- Office of the Chief of Naval Operations Research Development and Studies Branch OP-115 Washington, DC 20350
- 1 The Principal Deputy Assistant Secretary of the Navy (MRA&L) 4E780, The Pentagon Washington, DC 22203
- Director, Research and Analysis Division Plans and Policy Department Navy Recruiting Command 4015 Wilson Boulevard Arlington, VA 22203

- 1 Mr. Arnold Rubenstein
 Office of Naval Technology
 800 N. Quincy Street
 Arlington, VA 22217
- Dr. Worth Scanland, Director
 Research, Development, Test
 and Evaluation
 N-5
 Naval Education and Training Command
 NAS
 Pensacola, FL 32508
- Dr. Robert G. Smith
 Office of Chief of Naval Operations
 OP-987H
 Washington, DC 20350
- 1 Dr. Alfred F. Smode
 Training Analysis and Evaluation Group
 Department of the Navy
 Orlando, FL 32813
- Dr. Richard Sorensen
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Mr. J. B. Sympson
 Naval Personnel R & D Center
 San Diego, CA 92152
- Dr. Ronald Weitzman
 Code 54 WZ
 Department of Administrative Services
 U.S. Naval Postgraduate School
 Monterey, CA 93940

- 1 Dr. Robert Wisher
 Code 309
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Dr. Martin F. Wiskoff Navy Personnel R & D Center San Diego, CA 92152
- 1 Mr. John H. Wolfe
 Code P310
 U.S. Navy Personnel Research
 and Development Center
 San Diego, CA 92152
- 1 Mr. Ted M. I. Yellen
 Technical Information Office
 Code 201
 Navy Personnel R & D Center
 San Diego, CA 92152

Army

- 1 Technical Director U.S. Army Research Institute for the Behavioral and Social Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Myron Fisch1
 U.S. Army Research Institute for the
 Social and Behavioral Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Dr. Michael Kaplan U.S. Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333

- 1 Dr. Milton S. Katz
 Training Technical Area
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Dr. Harold F. O'Neil, Jr.
 Attn: PERI-OK
 Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- l LTC Michael Plummer
 Chief, Leadership and Organizational
 Effectiveness Division
 Office of the Deputy Chief of Staff
 for Personnel
 Department of the Army
 The Pentagon
 Washington, DC 20301
- Dr. James L. Raney
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Mr. Robert Ross U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- Dr. Robert Sasmor U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Commandant
 U.S. Army Institute of Administration
 Attn: Dr. Sherrill
 Ft. Benjamin Harrison, IN 46256
- Dr. Joseph Ward
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

Air Force

- l Air Force Human Resources Laboratory
 AFHRL/MPD
 Brooks Air Force Base, TX 78235
- U.S. Air Force Office of Scientific Research Life Sciences Directorate Bolling Air Force Base Washington, DC 20332
- 1 Dr. Earl A. Alluisi
 HQ, AFHRL (AFSC)
 Brooks Air Force Base, TX 78235
- 1 Dr. Genevieve Haddad
 Program Manager
 Life Sciences Directorate
 AFOSR
 Bolling Air Force Base
 Washington, DC 20332
- 1 Dr. David R. Hunter
 AFHRL/MOAM
 Brooks Air Force Base, TX 78235
- Research and Measurement Division Research Branch, AFMPC/MPCYPR Randolph Air Force Base, TX 78148
- 1 Dr. Malcolm Ree
 AFHRL/MP
 Brooks Air Force Base, TX 78235

Marines

1 Dr. H. William Greenup Education Advisor (E031) Education Center, MCDEC Quantico, VA 22134

- Director, Office of Manpower
 Utilization
 HQ, Marine Corps (MPU)
 BCB, Building 2009
 Quantico, VA 22134
- l Special Assistant for Marine
 Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy Street
 Arlington, VA 22217
- 1 MAJ Michael L. Patrow, USMC Headquarters, Marine Corps Code MPI-20 Washington, DC 20380
- 1 Dr. A. L. Slafkosky
 Scientific Advisor
 Code RD-1
 HQ, U.S. Marine Corps
 Washington, DC 20380

Coast Guard

- Chief, Psychological Research Branch
 U.S. Coast Guard (G-P-1/2/TP42)
 Washington, DC 20593
- 1 Mr. Thomas A. Warm
 U.S. Coast Guard Institute
 P.O. Substation 18
 Oklahoma City, OK 73169

Other DoD

1 DARPA
1400 Wilson Boulevard
Arlington, VA 22209

- Defense Technical Information Center Cameron Station, Building 5 Attn: TC Alexandria, VA 22314
 - Dr. William Graham
 Testing Directorate
 MFPCOM/MEPCT-P
 Ft. Sheridan, IL 60037
 - Director, Research and Data
 OASD (MRA&L)
 3B919, The Pentagon
 Washington, DC 20301
 - 1 Military Assistant for Training
 and Personnel Technology
 Office of the Under Secretary of
 Defense for Research and Engineering
 Room 3D129, The Pentagon
 Washington, DC 20301
 - 1 Dr. Wayne Sellman
 Office of the Assistant Secretary
 of Defense (MRA&L)
 2B269 The Pentagon
 Washington, DC 20301

Civil Government

- 1 Mr. Richard McKillip
 Personnel R & D Center
 Office of Personnel Management
 1900 E Street, NW
 Washington, DC 20415
- 1 Dr. Andrew R. Molnar Science Education Development and Research National Science Foundation Washington, DC 20550

- 1 Dr. H. Wallace Sinaiko Program Director Manpower Research and Advisory Services Smithsonian Institution 801 North Pitt Street Alexandria, VA 22314
- Dr. Vern W. Urry
 Personnel R & D Center
 Office of Personnel Management
 1900 E Street, NW
 Washington, DC 20415
- 1 Dr. Joseph L. Young, Director Memory and Cognitive Processes National Science Foundation Washington, DC 20550

Non-Government

- Dr. James Algina
 University of Florida
 Gainesville, FL 32611
- 1 Dr. Erling B. Andersen Department of Statistics Studiestraede 6 1455 Copenhagen DENMARK
- Psychological Research Unit
 Department of Defense (Army Office)
 Campbell Park Offices
 Canberra, ACT 2000
 AUSTRALIA
- 1 Dr. Isaac Bejar Educational Testing Service Princeton, NJ 08541

- l CAPT J. Jean Belanger Training Development Division Canadian Forces Training System CFTSHQ, CFB Trenton Astra, Cntario KOK 1BO CANADA
- Dr. Menucha Birenbaum
 School of Education
 Tel Aviv University
 Tel Aviv, Ramat Aviv 69978
 ISRAEL
- Dr. Werner Birke
 DezWPs im Streitkraefteamt
 Postfach 20 50 3
 D-5300 Bonn 2
 WEST GERMANY
- Dr. R. Darrell Bock
 Department of Education
 University of Chicago
 Chicago, IL 60637
- 1 Liaison Scientists
 Office of Naval Research
 Branch Office, London
 Box 39
 FPO, NY 09510
- 1 Dr. Robert Brennan
 American College Testing Programs
 P.O. Box 168
 Iowa City, IA 52240
- 1 Dr. C. Victor Bunderson
 WICAT Inc.
 University Plaza, Suite 10
 1160 S. State Street
 Orem, UT 84057
- 1 Dr. John B. Carroll
 Psychometric Laboratory
 University of North Carolina
 Davie Hall 013A
 Chapel Hill, NC 27514

- 1 Charles Myers Library Livingstone House Livingstone Road Stratford London E15 2LJ ENGLAND
- 1 Dr. Kenneth E. Clark
 College of Arts and Sciences
 University of Rochester
 River Compus Station
 Rochester, NY 14627
- 1 Dr. Norman Cliff
 Department of Psychology
 University of Southern California
 University Park
 Los Angeles, CA 90007
- Dr. William E. Coffman
 Director, Iowa Testing Programs
 334 Lindquist Center
 University of Iowa
 Iowa City, IA 52242
- 1 Dr. Meredith P. Crawford
 American Psychological Association
 1200 17th Street, N
 Washington, DC 20036
- 1 Dr. Fritz Drasgow
 Yale School of Organization and
 Management
 Yale University
 Box 1A
 New Haven, CT 06520
- I Dr. Mike Durmeyer
 Instructional Program Development
 Building 90
 NET-PDCD
 Great Lakes NTC, IL 60088
- 1 ERIC Facility-Acquisitions 4833 Rugby Avenue Bethesda, MD 20014

- 1 Dr. A. J. Eschenbrenner
 Dept. E422, Bldg. 81
 McDonald Douglas Astronautics Co.
 P.O. Box 516
 St. Louis, MO 63166
- Dr. Benjamin A. Fairbank, Jr.
 McFann-Gray and Associates, Inc.
 5825 Callaghan
 Suite 225
 San Antonio, TX 78228
- 1 Dr. Leonard Feldt
 Lindquist Center for Measurement
 University of Iowa
 Iowa City, IA 52242
- 1 Dr. Richard L. Ferguson
 The American College Testing Program
 P.O. Box 168
 Iowa City, IA 52240
- Dr. Victor Fields
 Department of Psychology
 Montgomery College
 Rockville, MD 20850
- 1 Univ. Prof. Dr. Gerhard Fischer Psychologisches Institut der Universitat Wien Liebiggasse 5/3 A 1010 Wien AUSTRIA
- Prof. Donald Fitzgerald University of New England Armidale, New South Wales 2351 AUSTRALIA
- I Dr. Edwin A. Fleishman Advanced Research Resources Organization Suite 900 4330 East West Highway Washington, DC 20014

- Dr. John R. Frederiksen
 Bolt, Beranek, and Newman
 50 Moulton Street
 Cambridge, MA 02138
- Dr. Robert Glaser
 LRDC
 University of Pittsburgh
 3939 O'Hara Street
 Pittsburgh, PA 15213
- Dr. Daniel Gopher
 Industrial and Management Engineering
 Technion-Israel Institute of
 Technology
 Haifa
 ISRAEL
- Dr. Bert Green
 Department of Psychology
 Johns Hopkins University
 Charles and 34th Streets
 Baltimore, MD 21218
- 1 Dr. Ron Hambleton
 School of Education
 University of Massachusetts
 Amherst, MA 01002
- Dr. Delwyn Harnisch
 University of Illinois
 242b Education
 Urbana, IL 61801
- I Dr. Chester Harris School of Education University of California Santa Barbara, CA 93106
- Dr. Lloyd Humphreys
 Department of Psychology
 University of Illinois
 Champaign, IL 61820

- Library
 HumRRO/Western Division
 27857 Berwick Drive
 Carmel, CA 93921
- Dr. Steven Hunka
 Department of Education
 University of Alberta
 Edmonton, Alberta
 CANADA
- 1 Dr. Jack Hunter 2122 Coolidge Street Lansing, MI 48906
- 1 Dr. Huynh Huynh
 College of Education
 University of South Carolina
 Columbia, SC 29208
- Prof. John A. Keats
 Department of Psychology
 University of Newcastle
 Newcastle, New South Wales 2308
 AUSTRALIA
- l Mr. Jeff Kelety
 Department of Instructional Technology
 University of Southern California
 Los Angeles, CA 90007
- Dr. Michael Levine
 Department of Educational Psychology
 210 Education Building
 University of Illinois
 Champaign, IL 61801
- 1 Dr. Charles Lewis
 Faculteit Sociale Wetenschappen
 Rijksuniversiteit Groningen
 Oude Boteringestraat 23
 9712GC Groningen
 NETHERLANDS

- 1 Dr. Robert Linn
 College of Education
 University of Illinois
 Urbana, IL 61801
- Dr. James Lumsden
 Department of Psychology
 University of Western Australia
 Nedlands, Western Australia 6009
 AUSTRALIA
- Dr. Gary Marco
 Educational Testing Service
 Princeton, NJ 08541
- Dr. Scott Maxwell
 Department of Psychology
 University of Houston
 Houston, TX 77004
- 1 Dr. Samuel T. Mayo
 Loyola University of Chicago
 820 North Michigan Avenue
 Chicago, IL 60611
- Prof. Jason Millman
 Department of Education
 Stone Hall
 Cornell University
 Ithaca, NY 14853
- 1 Dr. Melvin R. Novick
 356 Lindquist Center for Measurement
 University of Iowa
 Iowa City, IA 52242
- 1 Dr. Jesse Orlansky
 Institute for Defense Analyses
 400 Army Navy Drive
 Arlington, VA 22202
- Dr. Wayne M. Patience
 American Council on Education
 GED Testing Service, Suite 20
 One Dupont Circle, NW
 Washington, DC 20036

- Dr. James A. Paulson
 Portland State University
 P.O. Box 751
 Portland, OR 97207
- 1 Mr. Luigi Petrullo 2431 North Edgewood Street Arlington, VA 22207
- l Dr. Diane M. Ramsey-Klee
 R-K Research and System Design
 3947 Ridgemont Drive
 Malibu, CA 90265
- 1 Mr. Minrat M. L. Rauch
 P II 4
 Bundesministerium der Verteidigung
 Postfach 1328
 D-53 Bonn 1
 GERMANY
- Dr. Mark D. Reckase
 Educational Psychology Department
 University of Missouri-Columbia
 4 Hill Hall
 Columbia, MO 65211
- 1 Dr. Andrew Rose
 American Institutes for Research
 1055 Thomas Jefferson St., NW
 Washington, DC 20007
- Dr. Leonard L. Rosenbaum, Chairman
 Department of Psychology
 Montgomery College
 Rockville, MD 20850
- 1 Dr. Ernst Z. Rothkopf
 Bell Laboratories
 600 Mountain Avenue
 Murray Hill, NJ 07974
- 1 Dr. Lawrence Rudner
 403 Elm Avenue
 Takoma Park, MD 20012

- Dr. J. Ryan
 Department of Education
 University of South Carolina
 Columbia, SC 29208
- Prof. Fumiko Samejima
 Department of Psychology
 University of Tennessee
 Knoxville, TN 37916
- Dr. Kazuo Shigemasu
 University of Tohoku
 Department of Educational Psychology
 Kawauchi, Sendai 980
 JAPAN
- Dr. Edwin Shirkey
 Department of Psychology
 University of Central Florida
 Orlando, FL 32816
- 1 Dr. Robert Smith
 Department of Computer Science
 Rutgers University
 New Brunswick, NJ 08903
- 1 Dr. Richard Snow School of Education Stanford University Stanford, CA 94305
- Dr. Robert Sternberg
 Department of Psychology
 Yale University
 Box 11A, Yale Station
 New Haven, CT 06520
- l Dr. Patrick Suppes
 Institute for Mathematical Studies in
 the Social Sciences
 Stanford University
 Stanford, CA 94305

- 1 Dr. Hariharan Swaminathan Laboratory of Psychometric and Evaluation Research School of Education University of Massacuusetts Amherst, MA 01003
- Dr. Kikumi Tatsuoka
 Computer Based Education Research
 Laboratory
 252 Engineering Research Laboratory
 University of Illinois
 Urbana, IL 61801
- l Dr. David Thissen Department of Psychology University of Kansas Lawrence, KS 66044
- 1 Dr. Robert Tsutakawa Department of Statistics University of Missouri Columbia, MO 65201
- 1 Dr. Howard Wainer Educational Testing Service Princeton, NJ 08541
- 1 Dr. David J. Weiss
 N660 Elliott Hall
 University of Minnesota
 75 East River Road
 Minneapolis, MN 55455
- Dr. Susan E. Whitely
 Psychology Department
 University of Kansas
 Lawrence, KS 66044
- 1 Dr. Wolfgang Wildgrube Streitkraefteamt Box 20 50 03 D-5300 Bonn 2 WEST GERMANY

